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Direct numerical simulation of 
compressible free shear flows 

By  S. K. LELE 

Abstract 
Direct numerical simulations of compressible free shear layers in open domains 

are conducted. Compact finite-difference schemes of spectral-like accuracy are 
used for the simulations. Both temporally-growing and spatially-growing mixing 
layers are studied. The effect of intrinsic compressibility on the evolution of 
vortices is studied. The use of convective Mach number is validated. Details of 
vortex roll up and pairing are studied. A simple explanation of the stabilizing 
effect of compressibility is offered. Acoustic radiation from vortex roll up, pairing 
and shape oscillations is studied and quantified. 

1. Introduction 
Direct numerical simulations have been used to  study several incompressible 

turbulent flows. These studies have ranged from the simulations of homoge- 
neous turbulence (Rogallo, 1981, Lee and Reynolds, 1985, and Rogers, Moin and 
Reynolds, 1986), to  the turbulence in channel flows, (Moser and Moin, 1987, and 
Kim, Moin and Moser, 1987), boundary layers, (Spalart, 1988), and free shear 
flows, (Corcos and Sherman, 1984, Corcos and Lin, 1984, Riley and Metcalfe, 
1980, Metcalfe et. al., 1987, Lowery and Reynolds, 1986, and Sandham and 
Reynolds, 1987). The results obtained from the simulations have been exten- 
sively compared with the experimental measurements (Kim, Moin and Moser, 
1987, Spalart, 1988) and are being used as databases for developing and testing 
turbulence models (Mansour, Kim and Moin, 1988, and Center for Turbulence 
Research, 1987), studying the structure and dynamics of organized motions in 
turbulent flows (Center for Turbulence Research, 1987 and 1988), and test- 
ing the accuracy of experimental techniques by Moin and Spalart (1987). On 
the other hand, the study of compressible turbulent flows is relatively less ma- 
ture. Most simulations of compressible flows have been limited to the simula- 
tion of the large scales of the flow (Winkler et. al., 1987, Smarr et. al., 1984, 
Woodward, 1984, and Boris, 1988), with some notable exceptions (Feiereisen, 
Reynolds and Ferziger, 1981, and Passot and Pouquet, 1987). Comparisons with 
experimental measurements are less detailed in part due to the ‘large scale’ and 
two-dimensional nature of most simulations and lack of experimental data on 
turbulent fluctuations in compressible flows. The renewed interest in the high 
speed flows, as well as the need to develop turbulence models which incorporate 
the compressibility effects provide the motivation for the present work. This 
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paper provides a brief account of results obtained from direct simulations of 
compressible free shear layers. The simulations resolve all the relevant scales of 
motion and in particular do not employ any form of filtering or artificial dissipa- 
tion. Simulations are conducted for both two-dimensional and three-dimensional 
flows. Most results presented are based on the two-dimensional simulations. 

2. Numerical Method 
The numerical method used in the study is a compact finite difference scheme 

of spectral-like accuracy. The details of the numerical scheme have been de- 
scribed in detail elsewhere (Lele, 1988a). The full unsteady equations for mass, 
momentum and energy conservation are solved for an ideal gas. The Newtonian 
viscosity law (zero bulk viscosity), and Fourier law of heat conduction are used. 
Variation of viscosity and thermal conductivity with temperature is permit- 
ted. Conservation equation for of a passive scalar (mass fraction) is also solved. 
Time advancement is carried out by a compact storage third order Runge-Kutta 
scheme developed by Wray (1987). 

The main features of the finite-difference scheme are summarized. The fi- 
nite difference approximation fi to the first derivative $$(zi) at the node i is 
evaluated by solving a tridiagonal system of the form: 

The relations between the coefficients u,b and a are derived by matching the 
Taylor series coefficients of various order. With 

2 1 
3 

u = $(a + 2),b = -(4a - 1) 

a family of fourth order schemes is obtained. It may be noted that as a + 0 
this family merges into the well known fourth order central difference scheme. 
Similarly for a = f the classical Pade’ scheme is recovered. Furthermore for 
a! = 5 the leading order truncation error coefficient vanishes and the scheme 
is formally sixth order accurate. Most of the simulations presented here use 
this sixth order scheme. The spectral-like accuracy of the scheme follows from 
the nature of the dispersive errors associated with (1.1). It may be shown that 
compared to the traditional finite difference schemes the scheme (1.1) reduces 
the dispersive errors over a wider band of the length scales represented on the 
grid. This characterization of the dispersive errors is presented in figure-1. The 
straight line on the figure represents a spectrally accurate scheme (i.e. exact for 
all the wavenumbers represented on the mesh). The improved representation of 
the shorter spatial scales by the present scheme is evident from the figure. 

If the dependent variables are periodic then the system of relations (1.1) writ- 
ten for each node can be solved together as a linear system of equations. The 
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general non-periodic case requires additional relations appropriate for the near 
boundary nodes. These are described in Lele (1988a). The relation (1.1) along 
with a mathematically defined mapping between a non-uniform physical mesh 
and a uniform computational mesh provides derivatives on a non-uniform mesh. 

The second derivatives are evaluated by solving a system similar to (l.l), viz. 
I I  

( Y f i - 1  + f i t  + afa:k1 = 

where fa:' represents the finite difference approximation to the second derivative 
at node i. With 

4 1 
3 3 

a =  - ( l - a ) , b = - ( - l + l O a ) ,  

a one parameter family of fourth order schemes is obtained. Again as a + 0 
this family coincides with the well known fourth order central difference scheme. 
For a = & the classical Pade' scheme is recovered. For a = & a sixth order 
tridiagonal scheme is obtained. This scheme with 

2 12 3 a = - , a  = - , b  = - 
11 11 11 

is used for the simulations presented here. It may also be noted that the schemes 
(1.3) provide an accurate evaluation of the second derivative over a wide range 
of length scales. The error associated with the second derivative evaluation for 
a variety of schemes is shown on figure-2. The spectrally accurate evaluation 
corresponds to the parabola on the figure. The improvement of the present 
scheme in representing the shorter scales is again evident from this figure. 

Simulations are conducted for both spatially-evolving and temporally-evolving 
mixing layers. In both cases non-reflecting boundary conditions (Thompson, 
1987) are employed at the top and bottom boundaries of the computational do- 
main. In the spatially-evolving case non-reflecting boundary conditions are also 
used at the inflow and outflow boundaries. The computational grid is uniformly 
spaced in z (mean flow direction) and z (spanwise direction) and non-uniform 
in y (transverse to the mean flow). Typically a hyperbolic tangent mapping is 
used for the non-uniform mesh (in y) with the maximum grid spacing about 2-4 
times the minimum grid spacing. 

3. Mixing Layer Flows 
Direct numerical simulations of mixing layer forming between two streams 

flowing with speeds VI (faster stream) and V2 were conducted. The two streams 
were matched in static pressure but, in general, had different fluid densities. Such 
two stream mixing layers were studied by Brown and Roshko (1974) and subse- 
quently by other investigators. They noted that while the density ratio of the 
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two streams had a noticeable effect on the spreading rate of the mixing layer it 
was not enough to explain the slow spreading rate of supersonic mixing layers. 
Papamoschou and Roshko (1986) (referred to as PR from hereon) showed that 
this compressibility effect on the spreading rate could be parameterized in terms 
of a single Mach number, the Convective Mach Number M,, viz. the Mach num- 
ber defined in a frame of reference moving with the dominant eddies of the flow. 
They also derived an expression for M, in terms of the flow conditions of the 
two streams. Bogdanoff (1983) also suggested the same ‘intrinsic Mach number’ 
by a different argument. Recent experiments (Papamoschou, 1988, and Samimy 
and Elliott, 1988) stability analyses (Sandham and Reynolds, 1989, Ragab and 
Wu, 1988, Zhuang et. al., 1988) and numerical simulations (Soetrisno et. al., 
1988, Lele 1988b) have provided further support to the this notion. Numeri- 
cal simulations are used to test the notion of the convective Mach number in a 
fundamental way. Simulations were conducted for three types of mixing layer 
flows: A) Mixing of streams of equal entropy, B) Mixing of streams of equal 
stagnation enthalpy, and C) Mixing of streams of equal Mach number. These 
different classes of mixing layer flows allcwed us to vary the Mach number of 
the individual streams while keeping the convective Mach number k e d .  It is 
thus possible to  look for the influence of factors other than the convective Mach 
number. The spatially evolving simulations presented here were forced at the 
inflow by adding a v-velocity disturbance velocity of small amplitude (typically 
with a peak of 1%)to the inflow profiles. This disturbance was confined to the 
shear layer by means of a Gaussian shape function. It is possible to refine the 
forcing by using the linear stability eigenfunctions of the inflow profiles. Such 
a approach was used by Sandham and Reynolds (1987) in simulating incom- 
pressible mixing layers. The inflow disturbance contained the most unstable 
frequency and its first two subharmonics. 

In the temporally evolving simulations the initial condition provided the source 
of disturbance. Small amplitude incompressible disturbances were added to the 
tangent hyperbolic mean flow profile. Two groups of simulations were con- 
ducted. 1) Organized initial conditions - the disturbance contained a small 
number (typically two) of fourier modes with prescribed phase relations, and 
2) Random initial conditions - the disturbance had a white noise wavenumber 
spectrum with very small (typically lo-‘ or smaller) amplitude. Both 2-d and 
3-d simulations were conducted with the random initial conditions. 

The simulations had specific heat ratio, 7 = 1.4, Prandtl number, Pr = 3/4, 
in the range 100-500, where subscripts and Reynolds number R = 

1 and 2 refer to the high speed and low speed streams, respectively, and S,, is 
the initial vorticity thickness. 

1 

P I ( U I - U S ) ~ ~ ~  
~l 

4. Intrinsic compressibility 
The definition of a convective Mach number requires one to specify the speed of 

propagation of the dominant eddies. This speed of propagation was determined 



Direct numerical simulation of compressible free shear flows 83 

in the numerical simulations from plots of the location of local pressure ex- 
tremas against time. The pressure maxima correspond to the stagnation points 
between the vortices, and the pressure minima correspond to the vortex centers. 
The propagation speed is taken as the slope of these trajectories. An example 
of such a plot is shown in figure 3 for a class-A flow. For this particular case the 
Mach numbers of the two streams are 2.0 and 1.2 and the inflow disturbance 
contains the fundamental and its first two subharmonics. The trajectories of the 
stagnation points are shown in figure 3a. The location of the vortex centers are 
displayed in figure 3b. Two generations of pairing events can be seen in these 
figures. It may be noted that even with the pairing events the stagnation points 
move with a relatively uniform speed. During the pairing events the downstream 
vortex slows down while the upstream vortex speeds up. As the vortices pair 
the stagnation point in their middle is lost. It is also seen that the lower subhar- 
monics tend to modulate the location of upstream pairing events. Varying the 
frequency of the fundamental disturbance did not alter the propagation speed 
of the vortices. 

PR presented a formula for the vortex propagation speed based on the phys- 
ical argument that the static pressure at the stagnation point is related to the 
stagnation pressures in the two streams by the isentropic relation. This convec- 
tion speed formula was tested against the numerical simulation results at three 
different velocity ratios and several convective Mach numbers. The agreement 
between the observed speed and the formula is excellent in all the simulations 
(discrepancy of 1 - 2 %). It may be noted that when the specific heat ratio of 
the two gases is the same, the PR formula reduces to the formula proposed by 
Dimotakis (1984) for the propagation speed of vortices in incompressible shear 
layers. Thus fluid compressibility appears to have very little influence on the 
propagation of two-dimensional vortices. 

The spatial growth rate of the mixing layer depends both on the growth mea- 
sured in the convected frame of reference (temporal growth) and the convection 
speed of the vortices. Having verified that the convection speed is indepen- 
dent of the compressibility, compressibility effects in the spatial growth of the 
layer are studied. Figure 4 shows an example of the downstream evolution of 
three measures of mixing layer thickness. These are: 1) Thickness based on the 
Reynolds-averaged mean flow profile, 2) Thickness based on the Favre-averaged 
mean flow profile, and 3) Thickness based on the mean potential vorticity profile. 
For the example displayed, the layer was forced at the most unstable frequency 
with a 5 % forcing amplitude. The three cases (one from each class) have M, 
of about 0.4 and the same velocity ratio 2 of 0.6. The thickness is normalized 
by the initial thickness and the downstream distance is normalized by 10 S,, . It 
may be seen when M, is the same the spatial growth rate for the three cases is 
similar but not identical. The differences that remain arise from the dependence 
of the nondimensional convection speed on the density ratio 2.  Case C has 
the slowest propagation speed giving the fastest spatial growth, while case B has 
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the fastest propagation speed and the slowest growth. A visual picture of the 
spatially evolving mixing layers is presented in figure-5. Contours of vorticity are 
plotted for three simulations with M, about 0.4. The simulations were forced 
with the fundamental and two subharmonics. Vortex pairing events noted in 
figure3 can be visually seen in these contours. It may also be noted that the 
vortices are most evolved in case C (slowest propagation speed). 

Results obtained from the vortex roll up in temporally growing mixing layers 
are presented to further verify this density ratio effect on e. The temporal 
simulations are conducted in a frame of reference moving with U, = ::-& trL, 

01 and a2 being the sound speeds in the two streams. In this way the density 
ratio effect is removed. The initial amplitude in all the temporal simulations is 1 
%. In figure 6 two examples are shown with M, of about 0.4. The first case has 
streams with equal static temperature, i.e. T2 = 7'1 (class A) and the second case 
has streams with equal total temperature, i.e. hol = b2 (class B). Thickness 
measures (1) and (2) defined above are displayed against time normalized by 
106," 

U1-UU,' 
Experiments have documented the reduction in the growth rate of compress- 

ible shear layers as M, is increased (PR). This reduction is most easily under- 
stood in terms of the behavior of the temporally-evolving layer. In figure 7 we 
show the time history of thickness measure (2) for several different M,. The 
stabilizing influence of M, is clearly seen. It has been suggested that the slow 
growth arises primarily due to the reduced linear instability growth rate (PR 
and Sandham and Reynolds, 1989). 

In the next section we present a physical argument for this stabilizing effect. 

It may be noted that the time histories are almost identical. 

5. Evolution of the vorticity field 
The linear instability process leads to a reorganization of the vorticity field. 

The inviscid vorticity equation for the two dimensional flow may be written as: 

, 

a W  aw aw aw VP x VP v- - w v  * ti+ 
aY P2 

-+uc-= at a x  4. - u.), - 

showing that the rate of change of vorticity observed by an observer moving 
at speed Vc is due to three effects. 1) Advection relative to the observer (first 
two terms on the r.h.s.), 2) Change due to compression of fluid elements (third 
term), and 3) Baroclinic change (fourth term). The individual terms for a class 
A mixing layer at M, of 0.4 are shown in figure 8. It may be noted that the 
most important term causing the vorticity redistribution is the advection term. 
Advection may be seen as moving vorticity away from the stagnation region and 
bringing it to the vortex centers. This is precisely the incompressible instability 
mechanism causing the shear layer instability. The compression term, while not 
dominant at M, = 0.4, provides clues on how the stabilizing effect associated 
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with compressibility arises. A simple explanation of the stabilizing effect of com- 
pressibility is presented below. In figure 10 a schematic picture of the flow field 
around the vortices is presented in a frame of reference moving with speed V,, 
the speed of the vortices. As shown earlier the ‘stagnation points’ between the 
vortices also move at the same speed and thus are stationary in this frame. Fluid 
moving away from the stagnation points expands as it accelerates towards the 
vortex center. Past this point the flow compresses and decelerates towards the 
other stagnation point. This expansion and compression process may be seen 
in the characteristic quadrupole pattern of the dilatation field. The expansion 
and compression cycle has the effect of increasing the vorticity near the stagna- 
tion points and reducing it near the vortex center. This is exactly opposite of 
the redistribution arising from the advection term (the driving cause of insta- 
bility). The numerical simulations show that as M, is increased the vorticity 
compression effect becomes comparable in magnitude to the advection term. 

In class A flows, the baroclinic change is an order of magnitude smaller than 
the other terms. In class B and C flows, the density of the two streams are 
unequal and this generates strong baroclinic torques. This is essentially an 
incompressible effect and arises whenever a density gradient exists across the 
shear layer. As the roll up proceeds this density interface remains sharp at the 
‘braids’ and the pressure maximum (at the stagnation point in the convected 
frame) produces regions with dynamically significant baroclinic torque. For 
class B flows, the density of the low speed stream is always lower, thus the 
baroclinic torques tend to enhance the vorticity in the lower part of the braid 
and cause suppression of vorticity in the upper part of the braid. For class C 
flows, the density of the high speed stream is lower and a reversal of the situation 
just described takes place. The vortices evolving in class B and class C flows 
have a layered vorticity distribution. The baroclinic effect strongly modifies the 
vorticity distribution in the vortices. This mechanism of generation of baroclinic 
torques is shown in figure 9 for a class C flow. The net circulation of the vortices, 
however, remains relatively uninfluenced by this redistribution. 

6. Flows with eddy shocklets 
For M, around 0.7 and larger, the flow fields develop eddy shocklets. These 

shocks remain attached to the vortices and travel with them. For M, = 0.7 
the shocks arise during the vortex pairing events, but the flow field is other- 
wise shock free. For M, = 0.8 the shocklets are produced during the roll up. 
An example of flow fields with eddy shocklets is displayed in figure 11. Just 
as observed at lower M, the flow accelerates and decelerates around the vor- 
tices. Now, however, there are local regions where the relative Mach number 
of unity is exceeded, and near the vortex this supersonic flow slows down by 
first going through a shock, becoming subsonic, and then decelerating further 
by compressing towards the stagnation points. The regions of expansion are 
now more spread out and the regions of compression more compact (essentially 
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within the eddy shocklets). The increase of the vorticity due to the compression 
in the shock, as well as the increase in entropy is clearly observed. This flow 
field is remarkably similar to typical transonic flow past an airfoil. The induced 
velocity pattern associated with the fluid expansion and compression opposes 
the entrainment velocity induced by the clumped vorticity field. This may cause 
a further reduction in the entrainment of fluid into the layer. 

7. Acoustic radiation from vortex evolution 
Numerical simulations have been used to study the acoustic radiation arising 

from the unsteady processes of vortex roll up, pairing, shredding, and shape os- 
cillations. The acoustic efficiency for these processes has been studied at several 
Mach numbers. At low Mach number less than 0.1% of the energy extracted 
from the mean flow is radiated. This fraction increases to 1-2 % at M, of 0.6. 
A full account of these studies will be presented elsewhere (Lele and Ho, 1989). 
Here we present one example to illustrate the behavior. The example chosen 
corresponds to a temporally-growing mixing layer. The computation uses non- 
reflecting boundary conditions based on characteristic variables. These allow 
the acoustic waves to leave the computational domain. The example discussed 
here has M, = 0.6 , a value for which we find significant departures from the 
low Mach number aero-acoustic theory. The computational domain contains 
two wavelengths of the most unstable disturbance. The layer first rolls up to 
form two vortices which later pair to form a larger vortex. After the pairing the 
vortex continues to undergo shape oscillations for several cycles. This behavior 
is illustrated in figure 12 where the time history of layer thickness is plotted. 
The corresponding time history of pressure, velocity component normal to the 
layer, and the acoustic flux of energy leaving the domain near the bottom are 

and acoustic flux in terms of these normalized values. The roll up, pairing and 
nutation processes can be identified in these figures. The roll up and pairing 
cause the layer thickness to increase and generate a compression wave. Subse- 
quent to pairing, the nutation of the vortices causes a periodic energy exchange 
between the vortices and the mean flow. This process generates a series of com- 
pression and expansion waves which carry acoustic energy away from the layer. 
The numerical simulations show that the nutation frequency is close to 5 ,  where 
w is the peak vorticity. 

In figure13 the acoustic radiation for three different cases are compared. All 
case were for M, = 0.4, but differed in the initial disturbance. Case-1 con- 
tained only the fundamental disturbance (case-1), case-2 only the subharmonic 
disturbance, and case-3 contained both the fundamental and the subharmonic. 
It is evident (as anticipated by Laufer (1974)) that in case-3 the vortex merger 
produces the strongest acoustic radiation (8 times that in case-1 and twice that 
of case-2). In the time history of the acoustic signal the signals arising from the 
rollup and pairing can be separately identified. The acoustic signal from rollup 

also shown in this figure. Pressure is normalized as w, velocity as L yt, 
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contains a compression wave followed by a more spread out expansion wave 
while the acoustic signal from pairing generates more symmetric compression 
and expansion waves. 

8. Simulations with random initial conditions 
Temporally evolving mixing layer flows were simulated starting from very low 

level (peak amplitude white noise (equal amplitude to all fourier modes 
with uncorrelated phases). Both two-dimensional and three-dimensional simu- 
lations were conducted. The computational box was chosen to be 12 times the 
most unstable wavelength (based on the initial profile). The initial evolution of 
the disturbances corresponded to the predictions of the linear stability analysis. 
In figure14 the exponential growth rates obtained from two such simulations are 
shown. The two cases correspond to M, = 0.4 and M, = 0.8. The wavenumber 
and the growth rate are scaled with the local values of the vorticity thickness. 
The time scale is normalized by ul:u, in this figure. During this phase of ex- 
ponential amplification the layer grew in a laminar fashion. As the disturbances 
became nonlinear the harmonics of the linearly unstable disturbances began to 
amplify. With significant vorticity clumping the growth rates became larger than 
the ‘laminar instability’ estimates. The nonlinear process generated a broadband 
spectrum. In this regime a linear spreading of the mixing layer was observed. 
In figure15 data from three simulations are presented. It may be seen that for 
M, = 0.4 and M, = 0.6 a constant spreading rate was observed, with slower 
growth for M, = 0.6. It was verified that for M, lower than 0.4 the growth rate 
was not further increased. The temporal growth rate obtained for M, = 0.4 is 
close to 0.1 a value consistent with previous incompressible simulations Lesieur 
(1987). For M, = 0.8 the growth was slow and dominated by a laminar process. 
Later in time (outside the time range shown) vortices formed in the layer but 
the computational domain contained too few of them to constitute an adequate 
statistical sample. The convective Mach number concept was also tested with 
random initial conditions. In figure16 the time evolution of two run with the 
same Mc of 0.4 but different density ratios are compared. The temporal growth 
rates were quite close (though not identical). 

In figure-17 snapshots of the vorticity field are displayed for the case with 
M, = 0.4. The frames are equally separated in time. It may be seen that 
the linear instability process selects a length scale for the vortices. This length 
scale does not correspond to the most unstable wavelength of the initial profile. 
This is because the initial disturbance level was very low, allowing the layer to 
viscously thicken (Rea,, = 400). The length scale chosen by the flow corresponds 
to the most unstable wavelength at a later time (end of the laminar spreading 
regime in fig. 15). After the vortices form they undergo the merging instability. 
Since the vortices had a phase jitter the merging is also randomized. Figure-18 
presents similar snapshots for the mixing layer at M, = 0.6. It maybe noted 
that the length scale selected by the flow is larger. This is consistent with the 
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I linear instability behavior. The phase jitter in the vortices is again visible. Such 
phase jitter allows the turbulence statistics to evolve in a self-similar manner. 
Figure19 presents some of these statistics at four instants in the evolution (from 
the linearly spreading regime). The y-coordinate in the plots is scaled with the 
instantaneous vorticity thickness and the fluctuations are scaled by half the 
velocity difference across the layer. The mean velocity profiles are closely self- 
similar. The Reynolds stress is also close to being self-similar. The r.m.s. u and 
r.m.s. v (titled as u prime and v prime) have larger departure from self-similarity. 
Later in the evolution as the second pairing takes place the computational box 
contains too few vortices (‘independent’ samples) and the layer departs from 
self-similarity. As noted earlier the nonlinear process generate higher harmonics 
and create a broadband spectra. In figure-20 spectra of the fluctuating fields 
are plotted at various times. The spectra were obtained by fourier decomposing 
the fields in the periodic direction. The wavenumber was normalized with the 
initial vorticity thickness. The plots show the spectra obtained by integrating 
the energy associated with each fourier mode across the layer. The simulation 
start from a low level white noise. Linear instability selectively amplifies the 
unstable modes. Later in time the spectra fill up in the harmonics and finally 
become broadband. It is possible to see a shift in the peak of the spectra to low 
wavenumbers (since the layer grows in time). Even at late times the energy level 
of the broadband fluctuations is quite low. Previous studies of incompressible 
mixing layer (Lesieur, 1987) have suggested a -4 slope in the broad band portion. 
Such a spectral slope may be seen in the present simulations. Interestingly the 
low wavenumber portion of the pressure spectrum is very much like the velocity 

I 

I 

I spectrum, but at higher wavenumber the pressure spectrum drops more rapidly. 

This work was presented at the AIAA meeting in Reno, 1989. It is available 
as AIAA paper AIAA-89-0374 from AIAA. 
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(11 S e c d  Order Central D i N e m u  
(b) Fourth Order Cenml DiNercnccs 

0 . 0  0.5 I .O I .5 2.0 2.5 5.0 

Wavenumber 

Figure 1 Modified ravenumber andyrir for the a p  
proximatiom to the first derivative. 

/ ( I )  Second Order Cenml D i N a n c a  
(b) Founh Order Ccnd Dillemncu 

(e) Cmnpvt Rdc Scheme 

(d) Compact Tlidiagond Scheme (New) 

0.0 0.5 I .o I .5  2.0 i.5 3.0 

Wavenumber 

X 

t. 

X 

F i v r e  3 Trajectories of presanre extrema in a spa- 
t i d y  evdring miring layer. Pressure max- 
im shorn in A) correspond to the stagna- 
tion points in the convected frame and pres- 
sure midma shorn in b) correspond to the 
vortex centers. 

Figure 2 Modified ravenumber andjsis for the a p  
proximatio~ to the w o a d  derivative. 
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Figure 4 Streamwise evolution of d n g  h p r  thick- 
nesa measures. M c u a  h8.e 2 of 0.6, 
Me about 0.4 and the same inflow forcing. 
The difference in the growth rata is due to 
the dilferent density ratia. A) Ti = Ti, B) 
To, = To,, C )  MI = M I .  
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0.0 2.0 4.0 6.0 6.0 10.0 
T i m e  

Fignre 6 Tempord evolution of mixing layer thickness 
mecuures. Both ccues hare the same = 
0.38, A) Ti = TI, 9) To, = To,. 

T i m e  

Fignre 7 Ternpod evolution of mixing layer thicknas 
measures for different Me. All c- are from 
dur A : a) Me = 0.2, b) Me = 0.38, c)  
Me = 0.6, d) Mc = 0.8. 
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ul - 1  

9 - 
1 . 6 4 . 1  1.6 5.1 5.6 6.1 6.6 7.1 7.6 0.1 

X 

Figure 8 Vorticity evolution for class A mixing 
layer. M I  = 2.0, Mz = 1.2, M ,  = 
0.4. The panels are : vorticity field. 
advection term in moving frame ( -  
0.91 to 0.76), vorticity compression 
term (-0.22 to 0.25), and baroclinic 
term (-0.03 to 0.04), respectively. 

; J a  , , , , , I  
3 . 6 4 . 1  4.6 5.1 5.6 6.1 6.6 7.1 7.6 8.1 

X 

Figure 9 Vorticity evolution for class C mix- 
ing layer. A 4 1  = 1.5, Mz = 1.5, 
M ,  = 0.38. The baroclinic terms 
are comparable to the vorticity ad- 
vection and produce the layered vor- 
ticity profiles. The panels are : *?or- 
ticity field, pressure field, density field, 
and the baroclinic term, respectively. 

Figure 10 A schematic of the flow field in a franie of reference moving with the vortices. 
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F i b r e  12 Acomutic radiation from vortex pairing and 
shape oscillation. Me = 0.6, Time history of 
iniring layer thickiins measures, n o r m d i d  
preuure, normdired v velocity, and normd- 
ired acourtic flux at the bottom boundary. 

3 . 6 1 . 1  1.5 5 . 1  5.6 6.1 5.6 7 . 1  7.6 8.1 
Y 

Figure 11 Vortex evolution with eddy shocklets. The 
example shown is for c l a v  A mixing layer. 
MI = 4.0, M ,  = 2.4, Me = 0.8. The pan- 
4s present the ?orticity field. pressure field, 
density field, and temperature Reld, respec- 
tively. 

F i p r e  

d 

13 Acoustic radiation from vortexevolution. All 
cues have M, = 0.4. C w - 1  (solid) h u  
only the fundamentd disturbance, 2) ody 
the subharmonic disturbance (dashed) and 
3) both togsther (chain). The normdired 
pressure aignd in the far-field and normd- 
ired acoustic flux at the top bounduy are 
shorn. 
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Fignre 15 Miring layer growth for Mereat Ma. The 
coma correspond to Me = 0.4,0.6 and 0.8. 
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Ti me 
Figure 14 Growth rater for different hurier moda fa 

M. = 0.4 (solid) and M. = 0.8 (dubed). 
During thir phase luninu rpruding is ob. 
acned. 

Time 
Figure 16 Mixing layer 8roW.h at Me = 0.4. A) TI = 

Ti, B) To, = To,. 
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Figure 17 Snap shots of miring layer evolution at Me = 
0.4. Contours of vorticity are shorn. 

Figure 18 Snap ahoh of mixing layer evolution at Me = 
0.6. Contonrr of vorticity are shorn. 
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fim 19 S t . t i r t i ~  from the mixing layer at = 0.4. 
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Figure 20 Spectra of ducctrutionr im mising layer at 
A& = 0.4. 


